

<u>Application of Submerged Hydrodynamic</u> <u>Cavitating Jets (DynaJets®) to Oxidation Of</u> <u>Organic Compounds in Water</u>

Greg Loraine November 17, 2010

AOT 16

Dynaflow, Inc. 10621-J Iron Bridge Road Jessup, MD www.dynaflow-inc.com

www.dynaflow-inc.com

Outline

- Cavitation and Formation of Free Radicals
- Acoustic (Ultrasonic) Cavitation vs. Hydrodynamic Cavitation
- Hydrodynamic Cavitating Jets
- Oxidation / Reduction in Water
- Applications
- Conclusions

Underwater explosion from 6000 V spark. Collapse is analogous to cavitation

Cavitation

- Bubble nuclei in water expand & collapse when the local pressure changes very quickly.
- Collapsing bubbles produce tremendous pressures & temperatures in localized area (~5,200 K, ~200 Atm).
- Water vapor dissociates into OH[•] and H[•] H₂O → OH[•] + H[•]
- Volatile compounds can also dissociate into radicals $CCl_4 \rightarrow Cl^{\bullet} + Cl_3C^{\bullet}$

Reaction Location

- Inside collapsing bubble or at interface
- Volatile compounds enter the expanding bubble and decompose during collapse
- OH• and H• concentrations highest in center, decrease toward bubble wall
- Hydrophobic compounds partition to air-water interface
- Local depletion of starting compound and build up of products

Hydrodynamic & Ultrasonic Cavitation

- Ultrasonic (US) cavitation produced by mechanical vibration in a liquid localized at the face of the probe.
- US- high intensity, localized cavitation, energy intensive, scaling up difficult
- Hydrodynamic Cavitation (HD) is produced by motion of fluid.
- Large pressure fluctuations in shear layer of the liquid cause cavitation.
- HD wider area of cavitation, 1/10 1/100 energy required, easy to scale

DYNAJETS® Cavitating Jets

STRATOJET[®]

- Specially designed nozzles intensify cavitation and generate cavitation at lower pump pressures
- This is achieved through:
 - Passive acoustic excitation
 - Swirling the flow
- Both enhance vorticity and reduce pressure in the vortices

DYNAS WIRL®

www.dynaflow-inc.com

Hydrodynamic Cavitation for Oxidation

- Hydrodynamic cavitation can be 10 100 times more energy efficient than acoustic cavitation
- No addition of oxidizer
- Optical opacity or particulates are no problem
- Other than nozzle no special equipment required
- DYNAJETS[®]
 - Cavitation at lower pressures
 - Lower pressures lower electrical requirements
 - Hydraulic Energy = Flow Rate x Pressure change x time
 - Cavitation in wider area
 - Easier to scale up than US

Energy: Acoustic & Hydrodynamic

25 ppm *p*-Nitrophenol

Hydrodynamic cavitation can be 10 – 100 times more energy efficient than acoustic cavitation*

*K.Kalumuck, G. Chahine, J. Fluids Eng., 122,(2000) 465. S. Majumdar, P. S. Kumar, A. Pandit, Ultra. Sonochem., 5 (1998) 113. K. Jyoti, A. Pandit, Water Res., 38 (2004), 2249.

www.dynaflow-inc.com

Applications of DYNAJETS®

- Oxidation
 - Chlorinated solvents
 - Toluene, Acetone
 - Pesticides: Malathion, Carbaryl, 2,4-D
 - Pharmaceuticals and Personal Care Products
- Disinfection
 - Water
 - Wastewater
 - Storm water
- Recovery of Cellular Matter Algae
- Pretreatment of lignocellulose biomass
- Biodiesel production

Reaction Chamber

AOT 16 11-17-10

Pump

Selectivity of HD Cavitation Oxidation

- Volatile (high vapor pressure) can be oxidized easily
- pH can be used to adjust degree of ionization of weak acids and bases
- Hydrophobic compounds (high octanol-water partition coefficient log K_{OW}) oxidize faster than hydrophilic compounds
- Reaction intermediates are formed in regions of high radical concentrations, lower by-product concentrations
- Operating parameters (pump pressure, jet velocity, etc.), and nozzle design can be varied to improve oxidation performance

Volatile Compounds: Mineralization of Chloroform

2-Jet DYNASWIRL[®] 65 psi, Chloroform = 344 mg/L Vapor Pressure = 160 mm Hg @ 20 C

www.dynaflow-inc.com

NAFLOW, IN

Oxidation of Toluene

Hydrophobicity: pH effects & Methyl Orange

Decoloration of acid dye, Methyl Orange –pKa = 3.44

Solubility Effects: DMMP and Malathion

DYNAFLOW, INC

Malathion Oxidation Products

GC/MS data from Malathion oxidation: Dual Jet DYNASWIRL® at 30 psi

Mass Balance Of Malathion Oxidation

www.dynaflow-inc.com

DYNAFLOW, INC

- 7 pharmaceuticals and personal care products were mixed in wastewater treatment plant effluent
- Mixture oxidized using DYNASWIRL[®] nozzle at 60 psi for 30 minutes
- Mixture had a range of log K_{OW} values 1.4 5.9
- More hydrophobic compounds reacted faster

Oxidation of Mixture of PPCP in Wastewater

www.dynaflow-inc.com

DYNAFLOW, INC

Log Kow and Reaction Extent

In a mixture more hydrophobic compounds react faster

www.dynaflow-inc.com

NAFLOW.

Increasing Reaction Rates

- Nozzle design
- Pressure drop through the nozzle affects the quality of cavitation and oxidation efficiency
- Tweeking the system can increase reaction efficiency

AOT 16 11-17-10

DYNASWIRL[®] nozzle

www.dynaflow-inc.com

Effects of Operating Pressure

Chloramphenicol antibiotic used in aquaculture and veterinary applications Removal of Chloramphenicol using centerbody CaviJet at 45 and 65 psi

www.dynaflow-inc.com

Effect of Pressure Drop on Removal Rate

Initial conc = 30 mg/L, Volume = 10 L.

DYNAFLOW, INC

Oxidation with DYNASWIRL®

www.dynaflow-inc.com

Chloramphenicol Removal per kilowatt-hour

www.dynaflow-inc.com

Conclusions

- Cavitation initiated reactions are similar regardless of how the cavitation is initiated
- Hydrodynamic cavitation can be more energy efficient and easier to scale up than ultrasonic devices
- Selective removal of volatile and hydrophobic compounds can be accomplished
- Selective removal by pH adjustment
- Oxidation rates have non-linear dependence on pump pressure
- Nozzle geometry can effect oxidation rates

Collaboration

- <u>www.dynaflow-inc.com</u>, technology descriptions and papers
- Testing, design, and production services
- Collaborative research
 - Feasibility studies
 - Small business STTR
 - Grant proposal writing

Acknowledgements & Contact Information

- US Environmental Protection Agency
- NASA
- Office Naval Research
- NOAA
- NIEHS

• DYNAFLOW, INC. www.dynaflow-inc.com 10621-J Iron Bridge Road, Jessup, MD 20794. USA

> Dr. Greg Loraine
> Sr. Research Scientist (301) 604-3688
> gregl@dynaflow-inc.com

 Dr. Georges L. Chahine President (301) 604-3688 glchahine@dynaflow-inc.com

 Business POC: Dr. Jin-Keun Choi Principal Research Scientist (301) 604-3688 jkchoi@dynaflow-inc.com

www.dynaflow-inc.com

Oxidation of As (III) to As(V)

	AOP	Lamp Power kW	Pump Power kW	kW/1000 gal
	UV/H ₂ O ₂	0.004		31
	UV/TiO ₂	0.004		17.4
	DYNAJETS®		0.173	4.6
UV/H ₂ O ₂ & UV/TiO ₂ data Yoon and Lee 2005				
www.dvnaflow-inc.com				AOT 16 11-17-10

Disinfection Efficiency: E coli & B subtilis

Effects of nozzle geometry, and nozzle pressure were investigated using E. coli and B. subtilis.

